Glossary of Terms

- *a* Chapter 2, impact parameter, $a = r \sin \gamma$; Appendix D, parameter in third-order stationary phase theory.
- (a) Anomalous ray in multipath scenario.
- a_l^{\pm} Transmission coefficient of spectral number l; a_l^{+} applies to an outgoing wave; a_l^{-} applies to an incoming wave.
- AS Anti-spoofing.
- $Ai[\hat{y}]$ Airy function of the first kind.
- $\mathcal{A}(x,x_o)$ Phase accumulation from turning point at x_o to x in direction perpendicular to Cartesian-stratified plane in thin-film medium.
- (b) Branching ray in multipath scenario.
- $b_l^{(j)}$ Reflection coefficient of spectral number l and reflection degree j. For $j \ge 1$, j-1 denotes the number of internal reflections of wave before exiting sphere; j=0 denotes external reflection.
- B Chapter 2, half-width of shadow zone; Fresnel aliasing parameter.
- $Bi[\hat{y}]$ Airy function of the second kind.
- $\mathcal{B} = \mathcal{A}(x_2, x) \mathcal{A}(x, x_0).$
- c Speed of light.
- $\mathcal{E}(z)$ In-plane phase accumulation along z-direction parallel to the plane of stratification in a Cartesian-stratified thin-film medium.

 $D = r_L \cos \gamma_L$; essentially the distance of LEO from Earth's limb, generally the reduced distance; length or phase units apply, depending on context.

D Reduced distance from LEO to thin phase screen, $D^{-1} = D_{G}^{-1} + D_{L}^{-1}; D_{G}, D_{L} = GPS, LEO actual limb distances.$

 $D_V = (\rho^2 - v^2)^{1/2}$, the tangential distance in spectral number space from sphere of radius V to point ρ ; see Fig. 3-14.

E Electric field vector of electromagnetic wave; E_{\parallel} is the in-plane component; E_{\perp} is cross-plane.

 \hat{E} Stopped electric field with nominal RF removed.

 $\hat{E}[\omega]$ Fourier transform of \hat{E} .

f Frequency of harmonic wave.

 f_d Excess Doppler due to refraction.

F[x] Chapter 2 and Appendix D, $F[x] = (1 - \text{erf}[x^2]) \exp(x^2)$; Chapter 3, $F[x] = (1 - x^2)^{-1/2} \tan^{-1}(x^{-2} - 1)^{1/2}$;

Chapter 6, spectral function, proportional to the bending angle.

 $f(x_1, x_2)$ Off-diagonal element in the 2 × 2 characteristic matrix $M[x_1, x_2]$ for the parallel component of a wave in a stratified thin-film medium.

 $F(x_1, x_2)$ On-diagonal element in the 2 × 2 characteristic matrix $M[x_1, x_2]$ for the parallel component of a wave in a stratified thin-film medium.

F Vertical radius of the first Fresnel zone.

 $g_l(\rho)$ Phase-rate function for the *l*th spectral coefficient at position ρ .

 $g(\hat{y})$ Asymptotic version of $g_l(\rho)$.

 $g(x_1, x_2)$ On-diagonal element in the 2 × 2 characteristic matrix $M[x_1, x_2]$ for the \perp component of a wave in a stratified thin-film medium.

 $G(x_1, x_2)$ Off-diagonal element in the 2 × 2 characteristic matrix $M[x_1, x_2]$ for the \perp component of a wave in a stratified thin-film medium.

 $G[\rho, v]$ Refractive gradient-induced phase accumulation in the lth spectral coefficient, a_l^{\pm} , at the position $\rho = nkr$, v = l + 1/2.

 $G[\mu]$ $G[\mu] = (1 - \mu^2)^{1/2} \tan^{-1} (\mu^{-2} - 1)^{1/2}$.

h	Chapter 2, thin-screen altitude in length units; Chapter 3, penetration depth in Fresnel formulas.
$h_{\scriptscriptstyle S}$	Thin-screen altitude of the ray impact parameter, in phase units.
$h_{ m LG}$	Thin-screen altitude of straight line between an occulted GPS satellite and a LEO.
<i>h</i> (1)	Lower boundary in thin phase screen for multipath.
<i>h</i> (2)	Upper boundary in thin phase screen for multipath.
H	Magnetic field vector of electromagnetic wave.
Н	Scale height in exponential refractivity distribution; \boldsymbol{H}_p is pressure scale height; \boldsymbol{H}_p is density scale height.
$H_{\scriptscriptstyle S}$	Refractivity scale height in the transition zone.
H_w	$1-\sigma$ half-width of a Gaussian refractivity distribution.
$H_l^{\pm}(x)$	Hankel function of first (+) and second (-) kinds.
$\mathcal{A}[\mathbf{x}]$	Heaviside function.
i	Angle of incidence at a reflecting boundary.
I	Chapter 3, amplitude of incident ray in Fresnel formulas; Chapter 3, scattering from a sphere at LEO position minus diffraction from a knife-edge; Chapter 6, angle between the LEO orbit plane and the plane of incidence.
$I(\rho_{\scriptscriptstyle L}, \theta_{\scriptscriptstyle L})$	Electric field at the LEO from a reflecting sphere.
$J(ho_{\scriptscriptstyle m L}, heta_{ m L})$	Electric field at the LEO from the direct wave with a reflecting sphere; total field $E = I + J$.
J	Knife-edge diffraction integral.
$J_l(x)$	Bessel function of the first kind of order l .
k	Wave number of harmonic wave $k = 2\pi / \lambda$.
K_H	Sensitivity of refractive bending angle to change in scale height.
K_{γ}	Sensitivity of refractive bending angle to change in lapse rate.
K_{ρ}	$K_{\rho} = (\rho/2)^{1/3}$; $K_{\nu} = (\nu/2)^{1/3}$; $\rho = nkr$, $\nu = l + 1/2$.
l	Spectral number, an integer.
L1	Chapter 1, GPS carrier at 1.575 GHz; Chapter 2, phase in range units.
L2	Chapter 1, GPS carrier at 1.228 GHz; Chapter 2, phase in range units.

U(x)

Main ray in multipath scenario. (m) MSample size number. $M^@$ Fresnel aliasing threshhold for discrete sampling. M[y]Modulus of the derivatives of the Airy functions. $M[x_1,x_2]$ Unitary state transition matrix for the electromagnetic field in a stratified refracting medium. Index of refraction function in a refracting medium. n n_e Electron number density. Refractivity $\times 10^{-6}$; N = n - 1. N Pressure. p Generalized parameter in bending-angle function. p_k $P_l^m(x)$ Legendre polynomial of order l and degree m. r Radial coordinate; r_L applies to the LEO; r_G to the GPS satellite. Geocentric distance of spherical boundary surface. r_o Angle of reflection at a reflecting boundary. R Amplitude of the reflected wave from Fresnel formulas. $R_{\scriptscriptstyle E}$ Radius of the Earth. Ratio of amplitudes at the LEO of the main ray and caustic ray. R Arc length along ray. S S_{I} Aggregate scattering coefficient for spectral number 1. Scattering coefficient for a wave with j-1 internal reflections for $S_i^{(j)}$ $j \ge 1$; $S_L^{(0)}$ is the coefficient for an external reflected wave. Poynting vector; $S^{(i)}$ applies to the incident wave; $S^{(s)}$ applies to S the scattered wave. Eikonal function; eikonal equation is $|\nabla \mathcal{S}| = n(x, y, z)$. S Time. T Time interval spanned by data set; Chapter 3, amplitude of the transmitted wave in Fresnel formulas; Chapter 2 and Appendix A, temperature. Chapter 2, dimensionless thin screen altitude, $u = h(2/\lambda D)^{1/2}$; u

Chapter 5, dimensionless radial coordinate, u = kr.

component of the field in a stratified medium.

Solution to the electromagnetic wave equations for the transverse

- W(x) Solution to wave equations for the in-plane \perp component of the field in a stratified medium.
- $W(\rho, \rho_*)$ Weighting function in the wave theory analog of the Abel transform.
- V_{\perp} Component of the geocentric radial velocity of the tangency point of the GPS-LEO straight line in the propagation plane.
- $\mathcal{M}, \mathcal{M}^{\pm}$ Mie scattering functions in transfer equations across a boundary.
- Chapter 3, in-plane Cartesian coordinate \perp to $S^{(i)}$; also x = kr; Chapter 4, in-plane Cartesian coordinate \perp to the plane of stratification.
- y Argument of the Airy functions in a homogeneous medium; Chapter 3 and Chapter 5, cross-plane Cartesian coordinate \perp to $S^{(i)}$; Chapter 4, cross-plane coordinate parallel to the plane of stratification.
- \hat{y} Argument of the Airy functions in a refracting medium; $\hat{y} = v^{2/3} \zeta [v/\rho], \ \rho = nkr, \ v = l + 1/2.$
- \hat{y}^{\dagger} $\hat{y}^{\dagger} = 0.441 \dots$, the zero point of $g_l(\rho)$.
- $Y_l(x)$ Bessel function of the second kind of order l.
- Chapter 2, deviation of the ray path from a straight line; Chapter 3 and Chapter 5, in-plane Cartesian coordinate parallel to $S^{(i)}$; Chapter 4, in-plane coordinate parallel to the plane of stratification; Chapter 5, argument of the Airy function in third-order theory.
- α Chapter 2, refractive bending angle at the LEO.
- $\tilde{\alpha}$ $\tilde{\alpha}(\rho, \rho_*)$ is the cumulative bending angle on an incoming ray at position (r, θ) with $\rho = nkr$ and with an impact parameter value of ρ_* . For a spherical symmetric medium, the cumulative bending angle on an outgoing ray is $2\tilde{\alpha}(\rho_*, \rho_*) \tilde{\alpha}(\rho, \rho_*)$.
- $\alpha_{\rm L}$ Refractive bending angle at the LEO; $\alpha_{\rm L}(\rho_*) = 2\tilde{\alpha}(\rho_*, \rho_*)$; ρ_* obtained from Bouguer's law.
- β $\beta = -r(dn/dr)/n$; β is the ratio of the radius of curvature of the iso-refractivity surface to the radius of curvature of the ray.

 $\Gamma[x]$ Gamma function.

$$\Gamma(\hat{y})$$
 $d\Gamma/d\hat{y} = 3g(\hat{y}).$

 $\delta = \theta_{v^*} - \theta$ equals the refractive bending angle to first order in N.

 $\delta(x)$ Dirac delta function.

 ε Chapter 2, in the thin-screen model, $\varepsilon(h)$ is the phase perturbation due to discontinuity in a refraction parameter; Chapters 3, 4, and 5, dielectric coefficient in a refracting medium, assumed linear; Chapter 6, azimuthal angle of the apparent direction to the occulted GPS satellite as seen from the LEO.

 ζ Defocusing factor $\zeta^{-1} = 1 - Dd\alpha / d\rho_*$.

 $\zeta[v/\rho]$ Relates the argument \hat{y} of the Airy functions to v and ρ in the Bessel functions, $\hat{y} = v^{2/3}\zeta[v/\rho]$.

 η Auxiliary parameter in multipath altitude separation.

θ Geocentric central angle in the orbit plane relative to the z-axis; $θ_L$ applies to the LEO; $θ_G$ applies to the GPS satellite.

 $\tilde{\theta}_{L}$ Geocentric central angle of the LEO relative to the z-axis in the plane of propagation; see Fig. 6-8(a).

 $\theta_v = \sin^{-1}(v/\rho)$; see Fig. 3-14; θ_v is the "angle of incidence" of the vth spectral component in a spherical framework.

 κ Chapter 2, the coefficient relating refractivity to n_e , $\kappa = 40.3 \,\mathrm{m}^3/\,\mathrm{s}^2/\,e$; Chapter 3, the extinction coefficient in an absorbing medium.

 λ Wavelength of the harmonic wave, $\lambda = 2\pi / k$.

 μ Chapters 3, 4, and 5, magnetic permeability of the refracting medium; Chapter 3, $\mu = v / \rho$.

v Fractional spectral number, v = l + 1/2; Chapter 2, $v = (r_o - r)/r_o$.

 v^* Stationary phase value of fractional spectral number v.

 ξ Parameter in multipath altitude separation, Appendix C.

- Spherical Hankel function of the first (+) and second (-) kinds, $\xi_l^{\pm} = \sqrt{\pi x/2} H_{\nu}^{\pm}(x) = \sqrt{\pi x/2} (J_{\nu}(x) \pm i Y_{\nu}(x)).$
- Π Scalar potential for electromagnetic wave; ${}^{e}\Pi$ is electric potential; ${}^{m}\Pi$ is magnetic potential.
- ρ Radial coordinate $\rho = krn(r)$; Appendix A, mass density.
- $\tilde{\rho} = n_{\rm A} kr$; $n_{\rm A}$ is a constant.
- $\rho_{\rm L}$ Radial position of the LEO in spectral number space.
- ρ_* Ray path impact parameter.
- $\rho_{\mathbb{F}}$ Impact parameter at a caustic contact point.
- ρ^{\dagger} $\rho^{\dagger} = v \hat{y}^{\dagger} K_{\rho^{\dagger}}$, a stationary point for $G[\rho, v]$ with respect to ρ .
- $ho^{(0)}$ Wave theory analog of Fresnel reflection coefficient.
- Chapter $2, \sigma = \sqrt{(r_o r)/H_{p_o}}$; Appendix E, parameter in the electron density model; Chapter 5 and Appendix A, $\Delta \sigma$ is the \bot displacement between two rays with an impact parameter difference $\Delta \rho_*$; Chapter 5, parameter in the generalized Fresnel transform of Ai[y].
- σ_+ Chapter 2, accounts for ray path bending in the case of a discontinuous refractivity, $\sigma_+^2 = \sigma^2 + \beta \Delta N / N$.
- Time interval; Chapter 5, parameter in the generalized Fresnel transform of Ai[y].
- ϕ Azimuthal angular coordinate around the z-axis.
- $\varphi(h_s)$ Stationary phase profile embedded in the thin phase screen.
- φ Angle of incidence in Fresnel formulas.
- $\Phi(h_{S}, h_{LG})$ Thin-screen Fresnel phase = $\varphi(h_{S}) + (h_{S} h_{LG})^{2} / (2D)$.
- Φ^{\pm} Chapters 3 and 5, geometric phase delay to the LEO from the tangency point on the near side (–) or far side (+) of the sphere of radius ν .
- Φ^* Chapter 5, $\Phi^* = \Psi(\pm, -)|_{v=v^*} \pm \pi/4$, the stationary phase at point (r, θ) from wave theory.
- $\chi_l(x)$ Spherical Bessel function of the second kind of order l, $\chi_l(x) = \sqrt{\pi x / 2} Y_{l+1/2}(x)$.

$\hat{\mathbf{X}}$	$\hat{X} = 2(-\hat{y})^{3/2} / 3 + \pi / 4$, variable in the negative argument
	asymptotic forms for the Airy functions.

- $\psi(h_{LG})$ Phase of wave at the LEO in the thin screen model.
- $\psi_l(x)$ Spherical Bessel function of the first kind of order l, $\psi_l(x) = \sqrt{\pi x/2} J_{l+1/2}(x)$.
- $\Psi(\pm,\pm)$ Chapter 5, spectral density function for the phase of the ν th spectral component of the wave at the point (r,θ) .
- (±,±) The four combinations (±,±) yield the phase spectral densities $\Psi(\pm,\pm)$ for waves passing through either the near or the far side of a sphere, and for either incoming or outgoing waves. When $r_o/\lambda >> 1$, only the near-side combinations (±,-) contribute to the field at (r,θ) when $0 << \theta << \pi$, and in this case only the outgoing combination (+,-) applies at the LEO.
- $\Psi^{(j)}$ Chapter 3, reflection angle from geometric optics of an exit ray after j-1 internal reflections; Chapter 3, phase of degree j scattering phasor plus near-side geometric delay $\Psi^{(j)} = 2\Omega^{(j)} + \Phi^{-}.$
- $\Psi^{(S)}$ Chapter 3, phase of aggregate scattering plus near-side geometric phase delay at (r, θ) , $\Psi^{(S)} = \Psi^{(S)}(x, \theta, N, x_o, v) = 2\Omega^{(S)} + \Phi^-$.
- ω Angular frequency of the harmonic wave, $\omega = ck$.
- Chapter 4, $\varpi(x) = (n(x)^2 n_o^2)^{1/2}$ in a Cartesian stratified Airy layer; $n_o = n(x_o) = \text{constant}$; x_o is a turning point.
- $\Omega^{(j)}$ Chapter 3, phase of jth degree scattering coefficient $S_l^{(j)}$; $2\Omega^{(S)}$ is the phase of S_l ; Ω_A is the asymptotic form of $\Omega^{(S)}$ for $v << \rho$.